ISSN 2409-546X
ПИ № ФС77-61102
8-800-555-1487

Методы извлечения квадратного корня

Библиографическое описание: Прямостанов С. М., Лысогорова Л. В. Методы извлечения квадратного корня // Юный ученый. — 2017. — №2.2. — С. 76-77. URL: http://yun.moluch.ru/archive/11/823/ (дата обращения: 19.07.2019).





В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Ключевые слова: квадратный корень, извлечение квадратного корня.

На уроках математики я познакомился с понятием квадратного корня, и операцией извлечения квадратного корн. Мне стало интересно извлечение квадратного корня возможно только по таблице квадратов, с помощью калькулятора или есть способ извлечения вручную. Я нашел несколько способов: формула Древнего Вавилона, через решение уравнений, способ отбрасывания полного квадрата, метод Ньютона, геометрический метод, графический метод (, ), метод подбора угадыванием, метод вычетов нечётного числа.

Рассмотрим следующие способы:

  1. Извлечение корня путем разложения подкоренного числа на простые множители. Например.

Разложим на простые множители, используя признаки делимости 27225=5*5*3*3*11*11. Таким образом

  1. Канадский метод. Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность — не более двух — трёх знаков после запятой.

где х-число, из которого надо извлечь корень, с-число ближайшего квадрата), например:

=5,92

  1. Столбиком. Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр. Для ручного извлечения корня применяется запись, похожая на деление столбиком

Алгоритм извлечения квадратного корня

1.От запятой отдельно дробную и отдельно целую части делим на грани по две цифры в каждой грани (целую часть — справа налево; дробную — слева направо). Возможно, что в целой части может оказаться одна цифра, а в дробной — нули.

2.Извлечение начинается слева направо, и подбираем число, квадрат которого не превосходит числа, стоящего в первой грани. Это число возводим в квадрат и записывает под числом, стоящим в первой грани.

3.Находим разность между числом, стоящим в первой грани, и квадратом подобранного первого числа.

4.К получившейся разности сносим следующую грань, полученное число будет делимым. Образовываем делитель. Первую подобранную цифру ответа удваиваем (умножаем на 2), получаем число десятков делителя, а число единиц должно быть таким, чтобы его произведение на весь делитель не превосходило делимого. Подобранную цифру записываем в ответ.

5.К получившейся разности сносим следующую грань и выполняем действия по алгоритму. Если данная грань окажется гранью дробной части, то в ответе ставим запятую. (Рис. 1.)

Рис. 1

Рис. 2

Данным способом можно извлекать числа с разной точностью, например с точностью до тысячных. (Рис.2)

Рассматривая различные способы извлечения квадратного корня, можно сделать вывод: в каждом конкретном случае нужно определиться с выбором наиболее эффективного для того, чтобы меньше затратить времени для решения

Литература:

  1. Киселев А. Элементы алгебры и анализа. Часть первая.-М.-1928 г

Ключевые слова: квадратный корень, извлечение квадратного корня.

Аннотация: В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Публикация

№ 2 (11), апрель 2017 г. г.

Скачать выпуск

Автор


Научный руководитель

Рубрика

Спецвыпуск

Год публикации

Социальные комментарии Cackle