ISSN 2409-546X
ПИ № ФС77-61102
8-800-555-1487

Метод коэффициентов при решении квадратных уравнений

Библиографическое описание: Прямостанов С. М., Лысогорова Л. В. Метод коэффициентов при решении квадратных уравнений // Юный ученый. — 2018. — №1.1. — С. 66-67. URL: http://yun.moluch.ru/archive/15/1165/ (дата обращения: 25.04.2018).





 

В статье описываются нестандартные способы решения квадратных уравнений.

Ключевые слова: уравнения, квадратные уравнения, способы решения квадратных уравнений.

 

В школьном курсе математики изучается решение полных квадратных уравнений с помощью дискриминанта, теоремы обратной теореме Виета, выделения полного квадрата. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения:

1. Прием переброски старшего коэффициента

ах2+вх+с=0

Коэффициент а умножается на с, таким образом «перебрасывается» к свободному члену. Получается следующее уравнение у2+ру+к=0, тогда

х1=, х2=.

Пример:2х2-9х-5=0

У2-9у-10=0. у1=10, у2=-1, тогда х1==5, х2=-0,5.

Данный метод удобен в том случае, когда после переброски корни находятся по т. Виета, или (а+в+с=0; а-в+с=0).

Пример: . При переброске старшего коэффициента получим уравнение . По теореме, обратной т.Виета, получим корни у1=-3, у2=-, тогда х1==, х2=.

2. Сумма коэффициентов квадратного уравнения: ах2+вх+с=0.

                     Если выполняется условие а+в+с=0, то х1=1, х2=.

Пример: 21х2-3940х+3919=0. Так как 21-3940+3919=0 то, х1=1, х2=.

                     Если а-в+с=0, то х1=-1, х2=.

Пример: х2+1357х+1356=0. Так как 1-1357+1356=0, то х1=-1, х2=-1356.

3. Метод решения квадратных уравнений вида: ах2± (а2+1)х ± а=0.

                     В уравнениях вида ах2+(а2+1)х+а=0 корни х1=- а, х2=-.

Пример: 25х2+626х+25=0, х1=- 25, х2= – .

                     В уравнениях вида ах2- (а2+1)х+а=0 корни х1= а, х2=.

Пример: 13х2- 170х+13=0, х1=13, х2= .

                     В уравнениях вида ах2+(а2+1)х- а=0 корни х1=- а, х2=.

Пример: 25х2+626х – 25=0, х1=- 25, х2= .

                     В уравнениях вида ах2- (а2+1)х- а=0 корни х1= а, х2=.

Пример: 13х2- 170х-13=0, х1=13, х2= .

В уравнениях вида ах2-(а2+1)х+а=0 можно перебросить старший коэффициент, получим уравнение вида у2-(а2+1)у+а2=0. Сумма коэффициентов 1-(а2+1)+а2=0, следовательно у1=1, у22, тогда х1=, х2=а.

Предлагаем решить следующие уравнения, используя рассмотренные приемы:

  1.       Решить квадратные уравнения с большими коэффициентами

 

2 – 13х + 9 =0

1978х2 – 1984х + 6=0

2 + 11х + 7 = 0

319х2 + 1988х +1669=0

1999х2 + 2000х+1=0

313х2 +326х+13=0

839х2– 448х -391=0

345х2 – 137х – 208=0

939х2+978х+39=0

2+65х+8=0

  1.             Решите уравнение

а) 20092008х2-20092009х+1 (Олимпиада 2009 г. для поступающих в СМАЛ)

б) x(x+ 1) = 2014·2015 (турнир Ломоносова)

  1.             Найди наиболее рациональным способом корни уравнения:

17х2+290х+17=0

23х2- 530х+23=0

37х2+1370х – 37=0

38х2+3365 – 38=0

69х2+4762х+69=0

69х2- 4762х+69=0

69х2+4762х – 69=0

69х2+4762х – 69=0

Каждое из этих уравнений может быть решено без использования формулы корней квадратного уравнения; без громоздких вычислений; каждое решение уравнения почти устное.

Умение быстро и рационально решать квадратные уравнения необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений.

 

Литература:

 

  1.                Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
  2.                Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
  3.                Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
  4.                Энциклопедический словарь юного математика. – М.: Педагогика, 1985.
  5.                Лысогорова Л.В. Педагогические условия развития математических способностей младших школьников //Сибирский педагогический журнал. 2007. № 9. С. 228-233.
  6.                Зубова С.П., Лысогорова Л.В. Математические олимпиады в современных условиях. Самарский научный вестник. 2013. № 3 (4). С. 61-63.
  7.                Лысогорова Л.В., Кочетова Н.Г., Зубова С.П. Реализация принципа обучения математике на повышенном уровне трудности. В сборнике: Научные проблемы образования третьего тысячелетия VII Всероссийская научно-практическая конференция с международным участием. 2013. С. 109-114.

Ключевые слова: уравнения, квадратные уравнения, способы решения квадратных уравнений.

Аннотация: В статье описываются нестандартные способы решения квадратных уравнений.

Публикация

№ 1 (15), февраль 2018 г. г.

Скачать выпуск

Автор


Научный руководитель

Рубрика

Спецвыпуск

Год публикации

Социальные комментарии Cackle